<div class="printBefore"> <h1 class="pageTitle">COMP40260 Connectionism and Dynamical Systems</h1> <h2>Academic Year 2018/2019</h2>

The theory and practice of modeling with artificial neural networks will be presented. Models are closely related to human cognitive processes in general and to developmental processes and learning in particular. We will also cover basic concepts from dynamical systems theory and see how these are applied in modelling human behavior.

<div style="text-align:center;">Curricular information is subject to change</div>

What will I learn?

Learning Outcomes:

On completing this module, students will have acquired the following knowledge: 1) Understanding of the foundations of connectionism and artificial neural networks; 2) Understanding of the problem area in which neural networks have usefully been applied; 3) Understanding of the opportunities and limitations of connectionist simulation of human cognitive abilities, with a special focus on human development, and, 4) Understanding of the relationship between models and data with specific focus on connectionist models, and will be able to do the following: 5) Design and apply simple neural networks using one of several customized software packages, 6) Analyze the perfromance of a network during and after training, and 7) Relate network performance to the specific details of an empirical problem.

How will I learn?

Student Effort Hours:

Student	Hours
Effort Type	
Lectures	24
Computer	24
Aided Lab	
Specified	14
Learning	
Activities	
Autonomous	88
Student	
Learning	
Total	150

Am I eligible to take this module?

<div class="subHeadCB">Requirements, Exclusions and Recommendations</div>

Learning Recommendations:

Familiarity with elementary statistics, including distributions and the theories of linear correlation and regression will be assumed.

<div class="subHeadCB">Module Requisites and Incompatibles</div>

How will I be assessed?

Description	% of Final	Timing
	Grade	
Continuous	75	Varies over
Assessment:		the Trimester
Several small		
written		
exercises		
Essay: Brief	25	Coursework
essay (2000		(End of
words)		Trimester)

What happens if I fail?

```
<strong><u>Compensation</u></strong><This module is not passable by compensation</p><strong><u>Resit Opportunities</u></strong><n-semester assessment</p><strong><u>Remediation</u></strong>f you fail this module you may resit repeat or substitute where permissible
```

If you fail this module you may resit, repeat or substitute where permissible **Reading List** <div class="pageBreak"><nav class="white-box no-left-arrow zero-top-margin"> <h1 class="printOnly"> UCD Course Search Connectionism and Dynamical Systems (COMP40260) </h1><h3 class="printOnly">Academic Year 2018/2019</h3>The information contained in this document is, to the best of our knowledge, true and accurate at the time of publication, and is solely for informational purposes. University College Dublin accepts no liability for any loss or damage howsoever arising as a result of use or reliance on this information. <h4 class="noPrint">Connectionism and Dynamical Systems (COMP40260)</h4> <dl> <dt>Subject:</dt> <dd>Computer Science</dd> <dt>College:</dt> <dd>Science</dd> <dt>School:</dt> <dd>Computer Science</dd> <dt>Level:</dt> <dd>4 (Masters)</dd> <dt>Credits:</dt> <dd>7.5</dd> <dt>Semester:</dt> <dd>Semester Two</dd> <dt>Module Coordinator:</dt> <dd>Assoc Professor Fred Cummins</dd> <dt>Mode of Delivery:</dt> <dd>N/A</dd><dt>How will I be graded?</dt> <dd>40% </dd> </dl> <div class="noPrint" style="text-align:center; margin-top:10px;"><button class="menubutton" onclick="window.print()"><i class="fa fa-print fa-fw"> Print Page</button> (Google Chrome is recommended when printing this page)</div> </nav> </div>